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Abstract

This paper presents a double vector-integral-equation
(DOVIE) method for the modeling of integrated circuit
components on artificial (photonic band-gap) substrates. The
proposed computational method deals with the interaction of
circuit components (continuous plane wave spectrum) and
aruficial materials (discrete plane wave spectrum, Floquet
modes). The method of solution involves two stages of vector
integral-equations.  The first integral equation formulation is
to find the Green’s function for a PBG structure. A spectral-
domain moment-method is applied to the second vector
integral-equation to determine the fields or currents on the
circuit components and the associated parameters of interest.
Field solutions of microstrip lines on PBG substrates are
discussed. The results of this work initiate research for many
innovated microwave and millimeter-wave  integrated
components and devices.

1. Introduction

In recent years, with the advances of material processing
technology, there has been growing importance in the
development of advanced artificial materials. For examples,
photonic crystals, which are artificial materials made of two or
three dimensional periodic dielectrics, are in analogy to crystals
made of periodic atoms or molecules that exhibit electron band
gaps [1]. In photonic band gap (PBG) materials, the periodic
implants are comparable to a wavelength in size and may be
metallic, magneto-dielectric, ferromagnetic, ferroelectric, or
active, where the band gap can be controlled with external
current or voltage biases or light sources. Many technologies
may benefit from those artficial materials, where
electromagnetic wave propagation is properly controlled.
Recently, there is increasing interest in microwave and
millimeter-wave applications of PBG materials [2-5]. The
alternation of object signature in an identifiable way,
broadband absorber, and narrow-band frequency selective
surfaces are of many important applications. Artificial material
properties are scaleable and applicable 0 a wide range of
frequencies. Materials can be constructed for a given
geometry with millimeter dimensions for microwave control
and with micron dimensions for infrared control.

Electromagnetic wave theory and computational lechniques are
necessary (o determine the fundamental physical principles of
material properties and the design of devices and components
from microwave to optical frequencies. The existing analyses
including  plane-wave expansion method, integral equation
method, finite difference method, and finite element method,
are limited to either periodic structures or defects with highly
localized modes.  Periodic structures with anomalies are
important in many areas of engineering and science. Undesired
radar cross section (RCS) in frequency selective surfaces,
radiation degradation in phased array, trapped-wave modes in
periodic waveguides, and x-ray diffraction from crystals with
defects are some of the examples. The implementations of
PBG materials into integrated circuit and antenna structures
will result in many new technologies.

In the current knowledge of field, there is no appropriate
computational scheme for the field solution of integrated
circuit component interaction with PBG materials. In this
work, we propose a double vector-integral-equation (DOVIE) -
method. This DOVIE method works for general periodic
structures with anomalies. In the modeling process, there are
two vector integral-equations to be solved systematically and
sequentially. The first integral equation formulation is to find
the electromagnetic fields in an artificial material structure
with infinite phased arrays of § sources. A continuous phase
array method transforms the fields due to infinite phased
arrays to those due to a single § source. Those fields after
transformation are the dyadic Green’s function for the second
vector integral equation that is solved to determine the
parameters of interest. This paper presents our investigation
of the characteristics of miicrostrip transmission lines on PBG
substrates. The results are validated with limiting cases and
an effective uniform medium approach.

2. DOVIE Method for a Microstrip Line on a PBG
Substrate

The geometry of a microstrip line on a PBG substrate is shown
in Figure 1. The substrate, assumed infinitely large, is a
dielectric material with planar periodic blocks. The metal strip
is aligned with the arrays of material blocks. For simplicity, it
is also assumed that the microstrip is narrow and only the
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Figure 1. A microstrip line on a PBG substrate.
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longitudinal current exist.  Conventional numerical methods
such as the method of moments, finite element method, and
finite difference method can not deal with such problem
involving the interaction of circuit elements (continuous plane-
wave spectrum) and periodic structures (discrete plane-wave
spectrum). For the convenience of discussion, it is assumed
that the current is uniform across the strip, which is a
reasonable assumption for a conventional microstrip line.
Extension to  more sophisticate basis functions can be
incorporated with a straightforward modification. In the
moment method analysis, the microstrip longitudinal current in
Figure 1 is expanded in terms of basis function within a unit
cell (0<x<a) as was shown in Figure 2. The microstrip
current has a phase constant [, and is a periodic function of
x. In order to apply the Galerkin’s procedure in the moment
method, we need to evaluate the reaction of the current basis
functions. Therefore, it is necessary to compute the x electric
field component £, at the air/material interface due to a
current basis function. The inner products of E, and the basis
functions (testing functions) will be matrix elements of the
characteristic matrix. The deterministic equation is found by
setting the matrix determinant to zero. The propagation
constant [, is the root of the deterministic equation.

Instead of solving the problem directly, we first consider the
geometry shown in Figure 3, where there are infinite phased
arrays of current segments with progressive phase shifts ¢ y-

With the use of Floquet (or Bloch) theorem and periodic
boundary conditions, the problem is simplified to the modeling
of electromagnetic waves within a unit cell. This problem can
be solved with a 3-D integral equation formulation and the
method of moments for periodic structures. The details are
described in [6-7].
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Figure 2. Piecewise sinusoidal basis functions
along the micrstrip line in a unit cell.

Figure 3. An infinite array of microstrip segment with
progressive phase shift ¢,

A material block is at the center of the cell with length L (along
the x axis), width W (along the y axis), and the thickness T
(along the z axis). The substrate with thickness A is the
distance measured from the bottom of the block to the layer
interface. The boundary-value problem shown in Figure 3 is
formulated through an electric volume integral equation. The
electric fields within the material blocks are the displacement
currents. The fields in the structure are due to a basis
function p;(x,y). In the moment method procedure, these
displacement currents are discretized into many small cells
within which the fields are assumed constants, but with
unknown coefficients. For planar periodic structures, we may
express the components of the dyadic Green’s function for a
homogeneous substrate in terms of Floquet modes (plane wave
expansion) as

I 2 2 & ~jkxx=x)jky(y-y)
Gp=—7 2 X Gye X Y ) (1)

ab m=—oopj=—o0

2 2 )
where &, =—m—n+[3x and k, :%n+?l.
a

x, y, or z. B, is the propagation constant of the transmission

u or v is either

line. Gy, is the spectral Green’s function component and is
a function of spectral variables k, and ky., z, z', and the

material parameters. The solutions of the electric field in the
X direction for the phased array problem (Figure 3) can be
written in the following form:

-

1 =] oo

Ei(Bx,q)y):_ D 3 Ejit(m’n»Bx,q)y)ejkxx+jkyy, 2)

ab M=—oof]=—00

The solution of the electric field due to a microstrip current
segment only can be found from Eq. (2) through

ir 1 i
EY (x,y,Bx):—z;J.:tEx do, . (3)

The integration in (3) is the superposition of the solutions to
the periodic phased arrays. The key is the superposition
principle and phase cancellation. When we perform the
integration in (3), we are in effect canceling out all other line
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current sources in the infinite arrays except the one with zero
phase angle.

With the result in (3), we may proceed the Galerkin's
procedure to find the characteristics of a microstrip line. The
matrix elements of the characteristic matrix are

1 T 0o o .
Ait" :2_1{ J z z E;t(m’n’Bx,‘by)‘H (kx’ky)dq’y: 4)

where
ik ik
ai ke ky) =[] potx, e 4 gy (s)

and iand i are the indices for the basis functions on the strip.
The eigenvalues (propagation constants) B, are obtained from
the roots of the characteristic equation

—1 M=—ocofj=—00

det[A]=0 : (6)

For a lossless structure, the propagation constant of the
guided wave is a real number, and a bisection method for
finding the roots of nonlinear functions is used. The
characteristic impedance of the line is defined based on a
power-current formula. Direct evaluation of Poynting vector
is difficult, due to the discontinuity of electric fields at the edge
of the periodic blocks. A more applaudable approach is to
evaluate the magnetic field stored within a unit cell (0<x<a)
and use the formula [§]

2
Phe=——— W, , 7
N a(dBy fdow) ™ @
where
aDO 00 [o%) —~ 2
W,,,:%Q— [ ] 5 Al ky 0| dkyde (8)
s O —o0 M=—00

and H (kx:ky,2) is the magnetic field for a Floquet mode (see
Equation 2).

II1. Results and Discussions

For conventional artificial dielectrics, the periodic elements are
much smaller than a wavelength and the electromagnetic
properties of the materials can be characterized accurately by
an effective dielectric constant. For the present investigation
of the PBG materials, the periodic elements are comparable to
a wavelength and propagation band gaps exist in such
structures. The validity of the analysis is first checked against
the case where the implanted blocks are as large as the unit
cell. The substrate parameters are A=1 mm and £ = 4. The
implanted material-blocks have the following parameters:
L=3mm, W=3mm, T=05mm, A=0, and €,=10. The
periods of the arrays are the same as the block dimensions
(a=b=3mm) so that the implanted material blocks fill the
lower half of the substrate. The geometry is essentially a two-
layer structure with top layer € =4 and the bottom layer
€, =10. Each layer has thickness 0.5 mm. The SDA
solutions for such a structure are known [9). The results of
this test case are shown in Tables I and II for phase constant

method, the periodic blocks are divided into 9 rectangular
boxes where the electric fields are treated as displacement
currents found from a moment method procedure. It is seen
that the present DOVIE method agrees very well with the
SDA.

The results of the propagation constant and the characteristic
impedance of a microstrip on a PBG substrate are shown in
Figures 4 and 5, respectively.  For comparison, the SDA
results for an effective uniform substrate are also shown. In
numerical ~ computation, 1681 Floquet modes with
My=M,=M, =3 are used. Four sections of 16-point

Gaussian integration are used for the integral in (4). Generally,
the spacing between the periodic blocks along the microstrip
direction affects significantly the guided wave characteristics.
There are two interesting features of the microstrip-line mode
that are very different from a conventional microstrip-line
mode. When B a =m, there exists a mode gap within which
the propagation mode vanishes. Also, when 3 x22n/a-ky,
the guided wave modes become leaky-waves which are fast
waves with complex propagation constants. It is interesting to
see that at low frequencies the artificial substrate is like an
effective uniform medium. As frequency increases to near the
band-gap zone, the line impedance increases drastically and the
microstrip line becomes open-circuited at the band-gap edge.
When the frequency increases further and moves just out of the
band-gap zone, the microstrip line is like a short circuit. The
emphasis of this paper is on the numerical method. Further
investigations of the microstrip-line characteristics including
the effects of the strip location, the dimensions of the periodic
elements, and periods will be discussed elsewhere.

Table 1
Validity Check of Phase Constant 8/kg
With the Case of A Two-Layer Uniform Substrate

Frequency (GHz) SDA DOVIE Method
2 1.885 1.877
4 1.895 1.887
6 1.908 1.899
8 1.923 1.914
10 1.939 1.930
12 1.957 1.947
14 1.975 1.965
16 1.994 1.984
18 2.013 2.003
20 '2.033 2.023

Table II

Validity Check of Characteristic Impedance
With the Case of A Two-Layer Uniform Substrate

Frequency (GHz) SDA DOVIE Method
2 70.6 71.2
4 71.0 71.5
6 T 1.4
8 ';ZT T 71.7_‘7 o
0 | 126 | 10
12 | s T T
T wme | 14 J
1_6 77‘.3 o ““7'—];{
18 78.8 Y
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Figure 5. Characteristic impedance of a microstrip line on a
PBG substrate. h=1 mm, £=10, [ = 0.5mm,
W=05mm, T=04mm, A =03 mm, and Ep =2,
a=b=3mm.and the strip width w = | mm.
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