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Abstract

This paper presents a double vector-integral-equalion

(DOVIE) method for the modeling of integrated circuit

components on artificial (photonic band-gap) substrates. The

proposed computational method deals with the interaction of

circuit components (continuous plane wave spectrum) and

artificial materials (discrete plane wave spectrum, Floquet

modes). The method of solution involves two stages of vector

integral-equations. The first integral equation formulation is

to find the Green’s function for a PBG structure. A spectral-

domain moment-method is applied to the second vector

integral-equation to determine the fields or currents on the

circuit components and the associated parameters of interest.

Field solutions of microstrip lines on PBG substrates are

discussed. The results of this work initiate research for many

innovated microwave and millimeter-wave integrated

components and devices.

I. Introduction

In recent years, with the advances of material processing

technology, there has been growing importance in the

development of advanced artificial materials. For examples,

photonic crystals, which are artificial materials made of two or

three dimensional periodic dielectrics, are in analogy to crystals

made of periodic atoms or molecules that exhibit electron band

gaps [1]. In photonic band gap (PBG) materials, the periodic

implants are comparable to a wavelength in size and may be

metallic, magneto-dielectric, ferromagnetic, ferroelectnc, or

active, where the band gap can be controlled with external

current or voltage biases or light sources. Many technologies

may benefit from those artificial materials, where
electromagnetic wave propagation is properly controlled.

Recently, there is increasing interest in microwave and

millimeter-wave applications of PBG materials [2-5]. The

alternation of object signature in an identifiable waY,

broadband absorber, and narrow-band frequent y selective

surfaces are of many important applications. Artificial material

properties are scaleable and applicable to a wide range of

frequencies. Materials can be constructed for a given
geometry with mitfimeter dimensions for microwave control

and with micron dimensions for infrared control.

Electromagnetic wave theory and computational techniques are

necessary to determine the fundamental physical principles of

material properties and the design of devices and components

from microwave to optical frequencies. The existing anayses

including plane-wave expansion method, integral equation

method, finite difference method, and finite element method,

are limited to either periodic structures or defects with hig~Y

localized modes. Periodic structures with anomalies are

important in many areas of engineering and science. Undesired

radar cross section (RCS) in frequency selective surfaces,

radiation degradation in phased array, trapped-wave modes in

periodic waveguides, and x-ray diffraction from crystals with

defects are some of the examples. The implementations of

PBG materials into integrated circuit and antenna structures

will result in many new technologies.

In the current knowledge of field, there is no appropriate

computational scheme for the field solution of integrated

circuit component interaction with PBG materials. In this

work, we propose a double vector-integral-equation (DOVIE)

method. This DOVIE method works for general periodic

structures with anomalies. In the modeling process, there are

two vector integral-equations to be solved systematically and

sequentially. The first integral equation formulation is to fmd

the electromagnetic fields in an artificial material structure

with infinite phased arrays of 6 sources. A continuous phase

array method transforms the fields due to infinite phased

arrays to those due to a single 6 source. Those fields after
transformation are the dyadic Green’s function for the second

vector integral equation that is solved to determine the

parameters of interest. This paper presents our investigation

of the characteristics of m“icrostrip transmission lines on PBG

substrates. The results are validated with limiting cases and

an effective uniform medium approach.

2. DOVIE Method for a Microstrip Line on a P13G

Substrate

The geometry of a microstrip line on a PBG substrate is shown

in Figure 1. The substrate, assumed infinitely large, is a

dielectric material with planar periodic blocks. The metal strip
is afigned with the arrays of material blocks. For simplicity, it

is also assumed that the microstrip is narrow and only the
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Figure 1, A microstl-ip line on a PBG substrate

longitudinal current exist. Conventional numerical methods
such as the method of moments, finite element method, and

finite difference method can not deal with such problem

involving the interaction of circuit elements (continuous plane-

wave spectrum) and periodic structures (discrete plane-wave

spectrum). For the convenience of discussion, it is assumed

that the current is uniform across the strip, which is a

reasonable assumption for a conventional microstrip line.

Extension to more sophisticate basis functions can be

incorporated with a straightforward modification. In the

moment method analysis, the microstrip longitudinal current in

Figure 1 is expanded in terms of basis function within a unit

cell (O< x S a ) as was shown in Figure 2. The microstnp

current has a phase constant ~ ~ and is a periodic function of

x. In order to apply the Galerkin’s procedure in the moment

method, we need to evaluate the reaction of the current basis

functions. Therefore, it is necessmy to compute the i electric

field component Ex at the air/material interface due to a

cument basis function. The inner products of E1 and the basis

functions (testing functions) will be matrix elements of the

characteristic matrix. The deterministic equation is found by

setting the matrix determinant to -zero. The propagation

constant @~ is the root of the deterministic equation.

Instead of solving the problem directly, we fwst consider the

geometry shown in Figure 3, where there are intlnite phased

arrays of current segments with progressive phase shifts @~.

With the use of Floquet (or Bloch) theorem and periodic

boundary conditions, the problem is simplified to the modeling

of electromagnetic waves within a unit cell. This problem can

be solved with a 3-D integral equation formulation and the

method of moments for periodic structures. The details are

described in [6-7].

X=o X=a

Figure 2. Piecewise sinusoidal basis functions
along the micrstrip line in a unit cell.

Figure 3. An infinite m-ray of microstrip segment with

progressive phase shift 0,,,

A material block is at the center of the cell with length L (along

the -i axis). width W (along the j axis), and the thickness T

(along the ~ axis). The substrate with thickness A is the

distance measured from the bottom of the block to the layer

interface. The boundary value problem shown in Figure 3 is

formulated through an electric volume integral equation. The

electric fields within the material blocks are the displacement

currents. The fields in the structure are due to a basis

function pi (x, y). In the moment method procedure, these

displacement currents are discretized into many small cells

within which the fields are assumed constants, but with

unknown coefficients. For planar periodic structures, we may

express the components of the dyadic Green’s function for a

homogeneous substrate in terms of Floquet modes (plane wave

expansion) as

Guv = ~ ~ ~ (?Uve-Jkx ‘x-x’‘-Jky(y-y), (1)
ab ~.–mn.–m

2m7t 2n7r 4 y
where kx = — +—. u or v is either+~x andky=~ b

a

x, y, or z. ~ x is the propagation constant of the transmission

line. Guv is the spectral Green’s function component and is

a function of spectral variables kx and ky, z, z’, and the

material parameters. The solutions of the electric field in the

i direction for the phased array problem (Figure 3) can be

written in the following form:

.

M3x,oy)=l2 jkx .x+jkyymi E+(rn,n,Px,@y)e , (2)
ab nlz–can=.ca

The solution of the electric field due to a microstrip current

segmcnl only can be found from Eq. (2) through

(3)

The integration in (3) is the superposition of the solutions to

the periodic phased arrays. The key is the superposition
principle and phase cancellation. When we perform the
integration in (3), wc are in effec[ canceling OUL all other Iirw
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current sources in the infinite arrays except the one with zero

phase angle.

With the result in (3), we may proceed the Galerkin’s

procedure to find the characteristics of a microstrip line. The

matrix elements of the characteristic matrix are

where

9i’(~x,~y) = Jj Pi’(x) Y)e ‘k’x+Jky‘akdy (5)

and i and ~ are the indices for the basis functions on the strip.

The eigenvalues (propagation constants) ~ ~ are obtained from

the roots of the characteristic equation

det[A] = O . (6)

For a Iossless structure, the propagation constant of the

guided wave is a real number, and a bisection method for

finding the roots of nonlinear functions is used. The

characteristic impedance of the line is defined based on a

power-current formula. Direct evaluation of Poynting vector

is difficult, due to the discontinuity of electric fields at the edge

of the periodic blocks. A more applaudable approach is to
evaluate the magnetic field stored within a unit cell (O< x s a )

and use the formula [8]

Pave = 2 JJ(m ,
a(d~ ~ / do))

(7)

where

WI‘~~ ~ i lfmx,ky, z)12dkydz (8)
- m.-

and ti(kx, ky, z) is the magnetic field for a Floquet mode (see

Equation 2).

III. Results and Discussions

For conventional artificial dielectrics, the p-iodic elements are

much smaller than a wavelength and the electromagnetic

properties of the materials can be characterized accurately by

an effective dielectric constant. For the present investigation

of the PBG materials, the periodic elements are comparable to

a wavelength and propagation band gaps exist in such

structures. The validity of the analysis is first checked against

the case where the implanted blocks are as large as the unit

cell. The substrate parameters are h = 1 mm and e = 4. The

implanted material-blocks have the following parameters:

L=3mm, W=3mm, T=05mm, A= O, and Ee=lO. The

periods of the arrays are the same as the block dimensions

(a= b = 3 mm ) so that the implanted material blocks fill the

lower half of the substrate. The geometry is essentially a two-

layer structure with top layer & = 4 and the bottom layer

Ee=lt). Each layer has thickness 0.5 mm. The SDA

solutions for such a structure are known [9]. The results of

this test case are shown in Tables I and II for phase constant

method, the periodic blocks are divided into 9 rectangular

boxes where the electric fields are treated as displacement

currents found from a moment method procedure. It is swn

that the present DOVIE method agrees very well with the

SDA.

The results of the propagation constant and the characteristic

impedance of a microstrip on a PBG substrate are shown in

Figures 4 and 5, respectively. For comparison, the SDA
results for an effective uniform substrate are also shown. In

numerical computation, 1681 Floquet modes with
Mx = h4y = LIZ = 3 are used. Four sections of 16-point

Gaussian integration are used for the integral in (4). Generally,

the spacing between the periodic blocks along the microstrip

direction affects significantly the guided wave characteristics.

There are two interesting features of the microstrip-line mode

that are very different from a conventional microstrip-line

mode. When ~ ~a = n , there exists a mode gap within which

the propagation mode vanishes. Also, when P ~ 2 27t I a – k.,

the guided wave modes become leaky-waves which are fast

waves with complex propagation constants. It is interesting to

see that at low frequencies the tilcial substrate is like an
effective uniform medium. As frequency increases to near the

band-gap zone, the line impedance increases drastically and the

microstrip line becomes open-circuited at the band-gap edge.

When the frequency increases further and moves just out of the

band-gap zone, the microstip line is like a short circuit. The

emphasis of this paper is on the numerical method. Further

investigations of the microstrip-line characteristics including

the effects of the strip location, the dimensions of the periodic

elements, and periods will be discussed elsewhere.

14 1.975 1.965

16 1.!394 1.984

18 2.013 2.003

20 “2.033 2.023

‘--Validity Check of Cha.mctemtlc fmpedance

With the Case of A Tw~Layer uniform Subarate

Frequency (GHz) SDA

I

DOVIE Method

2 70.6 71.2

4 71.0 71.5

.. I 1
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Propagation constant ofa microstrip line on a Figure 5

PBG substrate. h = 1 mm, s = 10, I,= 0.5 mm,
~=0.5mm, T= O.4mm, A=O.3 mm, and se =2,

a = b = 3 mm, and the strip width w = 1mm.

Frequency (,(. ;l .:;

Characteristic impedance ofa microstrip line on a

PBG substrate. h = 1 mm, s = 10, L = O5mm,
w = ().5mm, T = 0.4mm, A = 0.3 mm, and &e =2,

a = b = 3 tmm. and the strip width MI= 1mm.
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